Intermediate Algebra (6th Edition)

Published by Pearson
ISBN 10: 0321785045
ISBN 13: 978-0-32178-504-6

Chapter 6 - Cumulative Review: 48

Answer

$\dfrac{2(4a+3)}{(a+2)(a-2)}$

Work Step by Step

The factored form of the given expression, $ \dfrac{5a}{a^2-4}-\dfrac{3}{2-a} ,$ is \begin{array}{l}\require{cancel} \dfrac{5a}{a^2-4}-\dfrac{3}{-(a-2)} \\\\= \dfrac{5a}{a^2-4}+\dfrac{3}{a-2} \\\\= \dfrac{5a}{(a+2)(a-2)}+\dfrac{3}{a-2} .\end{array} Using the $LCD= (a+2)(a-2) ,$ then the given expression simplifies to \begin{array}{l}\require{cancel} \dfrac{1(5a)+(a+2)(3)}{(a+2)(a-2)} \\\\= \dfrac{5a+3a+6}{(a+2)(a-2)} \\\\= \dfrac{8a+6}{(a+2)(a-2)} \\\\= \dfrac{2(4a+3)}{(a+2)(a-2)} .\end{array}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.