Intermediate Algebra (12th Edition)

Published by Pearson
ISBN 10: 0321969359
ISBN 13: 978-0-32196-935-4

Chapter 9 - Mixed Review Exercises - Page 639: 4

Answer

$e$

Work Step by Step

Let $ x=10^{\log e} $. Taking the logarithm of both sides results to \begin{align*}\require{cancel} \log x&=\log10^{\log e} .\end{align*} Using the properties of logarithms, the equation above is equivalent to \begin{align*}\require{cancel} \log x&=(\log e)(\log10) &(\text{use }\log_b x^y=y\log_b x) \\ \log x&=(\log e)(1) &(\text{use }\log 10=\log_{10}10=1) \\ \log x&=\log e .\end{align*} Since $\log x=\log y$ implies $x=y$, then the equation above implies \begin{align*} x&=e .\end{align*} With $x=10^{\log e}$ and $x=e$, then $ 10^{\log e} $ evaluates to $ e $.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.