Intermediate Algebra (12th Edition)

Published by Pearson
ISBN 10: 0321969359
ISBN 13: 978-0-32196-935-4

Chapter 9 - Mixed Review Exercises - Page 639: 14

Answer

$\left\{\dfrac{1}{8}\right\}$

Work Step by Step

Using the properties of logarithms, the given equation, $ \log_3(x+1)-\log_3x=2 ,$ is equivalent to \begin{align*}\require{cancel} \log_3\dfrac{x+1}{x}&=2 &(\text{use }\log_b \dfrac{x}{y}=\log_b x-\log_b y) .\end{align*} Since $\log_b y=x$ implies $y=b^x$, the equation above implies \begin{align*}\require{cancel} \dfrac{x+1}{x}&=3^2 \\\\ \dfrac{x+1}{x}&=9 .\end{align*} Using the properties of equality, the equation above is equivalent to \begin{align*}\require{cancel} \cancel x\cdot\dfrac{x+1}{\cancel x}&=9\cdot x \\\\ x+1&=9x \\ 1&=9x-x \\ 1&=8x \\\\ \dfrac{1}{8}&=\dfrac{\cancel{8}x}{\cancel{8}} \\\\ \dfrac{1}{8}&=x .\end{align*} Hence, the solution set of the equation $ \log_3(x+1)-\log_3x=2 $ is $ \left\{\dfrac{1}{8}\right\} $.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.