Intermediate Algebra (12th Edition)

Published by Pearson
ISBN 10: 0321969359
ISBN 13: 978-0-32196-935-4

Chapter 9 - Mixed Review Exercises - Page 639: 12

Answer

$\left\{0.348\right\}$

Work Step by Step

Taking the logarithm of both sides, the given equation, $ 8^{3x}=5^{x+1} $ is equivalent to \begin{align*}\require{cancel} \log8^{3x}&=\log5^{x+1} .\end{align*} Using the properties of logarithms, the equation above is equivalent to \begin{align*}\require{cancel} 3x\log8&=(x+1)\log5 &(\text{use }\log_b x^y=y\log_b x) \\ 3x\log8&=x\log5+\log5 &(\text{use the Distributive Property}) .\end{align*} Using the properties of equality, the equation above is equivalent to \begin{align*} 3x\log8-x\log5&=\log5 \\ x(3\log8-\log5)&=\log5 &(\text{factor out }x) \\\\ \dfrac{x(\cancel{3\log8-\log5})}{\cancel{3\log8-\log5}}&=\dfrac{\log5}{3\log8-\log5} \\\\ x&=\dfrac{\log5}{3\log8-\log5} .\end{align*} Using a calculator, the approximate values of each logarithmic expression above are \begin{align*} \log5&\approx0.69897 \\ \log8&\approx0.90309 .\end{align*} Substituting the approximate values in $ x=\dfrac{\log5}{3\log8-\log5} $, then \begin{align*} x&\approx\dfrac{0.69897}{3(0.90309)-0.69897} \\\\ x&\approx0.348 .\end{align*} Hence, the solution set of the equation $ 8^{3x}=5^{x+1} $ is $ \left\{0.348\right\} $.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.