Intermediate Algebra (12th Edition)

Published by Pearson
ISBN 10: 0321969359
ISBN 13: 978-0-32196-935-4

Chapter 9 - Chapter 9 Test - Page 640: 6

Answer

$9$

Work Step by Step

Using $b^{\log_b x}=x,$ the given expression, $ 7^{\log_7 9} ,$ is equal to $9$. Alternatively, the given expression can be solved by letting $ x=7^{\log_7 9} $. Taking the logarithm of both sides, the equation above is equivalent to \begin{align*}\require{cancel} \log x&=\log7^{\log_7 9} .\end{align*} Using the properties of logarithms, the equation above is equivalent to \begin{align*}\require{cancel} \log x&=(\log_7 9)\log7^{} &(\text{use }\log_b x^y=y\log_b x) \\\\ \log x&=\left(\dfrac{\log9}{\log7}\right)\log7 &(\text{use Change-of-Base Formula}) \\\\ \log x&=\left(\dfrac{\log9}{\cancel{\log7}}\right)\cancel{\log7} \\\\ \log x&=\log9 .\end{align*} Since $\log_b x=\log_b y$ implies $x=y$, then the equation above implies \begin{align*}\require{cancel} x&=9 .\end{align*} With $x=7^{\log_7 9}$ and $x=9$, then the expression $7^{\log_7 9}$ evaluates to $9$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.