Intermediate Algebra (12th Edition)

Published by Pearson
ISBN 10: 0321969359
ISBN 13: 978-0-32196-935-4

Chapter 9 - Chapter 9 Test - Page 640: 19

Answer

$\dfrac{1}{2}\log_5 x-\log_5 y-\log_5 z$

Work Step by Step

Using the properties of logarithms, the given expression, $ \log_5 \left(\dfrac{\sqrt{x}}{yz}\right) ,$ is equivalent to \begin{align*}\require{cancel} & \log_5 \sqrt{x}-\log_5 (yz) &(\text{use }\log_b \dfrac{x}{y}=\log_b x-\log_b y) \\&= \log_5 \sqrt{x}-\left(\log_5 y+\log_5 z\right) &(\text{use }\log_b (xy)=\log_b x+\log_b y) \\&= \log_5 x^{1/2}-\log_5 y-\log_5 z \\&= \dfrac{1}{2}\log_5 x-\log_5 y-\log_5 z &(\text{use }\log_b x^y=y\log_b x) .\end{align*} Hence, the expression $ \log_5 \left(\dfrac{\sqrt{x}}{yz}\right) $ is equivalent to $ \dfrac{1}{2}\log_5 x-\log_5 y-\log_5 z $.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.