Intermediate Algebra (12th Edition)

Published by Pearson
ISBN 10: 0321969359
ISBN 13: 978-0-32196-935-4

Chapter 9 - Chapter 9 Test - Page 640: 15

Answer

$\left\{\dfrac{1}{2}\right\}$

Work Step by Step

Since $\log_b y=x$ implies $b^x=y$, the given equation, $ x=\log_93 $, implies \begin{align*}\require{cancel} 9^x&=3 .\end{align*} Expressing both sides of the equation above in the same base results to \begin{align*}\require{cancel} \left(3^2\right)^x&=3 \\\\ 3^{2x}&=3^1 .\end{align*} Since $b^x=b^y$ implies $x=y$, the equation above implies \begin{align*}\require{cancel} 2x&=1 .\end{align*} Using the properties of equality, the equation above is equivalent to \begin{align*}\require{cancel} \dfrac{\cancel2x}{\cancel2}&=\dfrac{1}{2} \\\\ x&=\dfrac{1}{2} .\end{align*} Hence, the solution set of the equation $ x=\log_93 $ is $ \left\{\dfrac{1}{2}\right\} $.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.