Answer
The value of $\log_2 32$ is $\underline{5}$. This means that if we raise $\underline{2}$ to the $\underline{5^{th}}$ power, the result is $\underline{32}$.
Work Step by Step
Using the properties of logarithms, the given expression, $
\log_2 32
,$ is equivalent to
\begin{align*}\require{cancel}
&
\log_2 2^5
\\&=
5\log_2 2
&(\text{use }\log_b x^y=y\log_b x)
\\&=
5(1)
&(\text{use }\log_b b=1)
\\&=
5
.\end{align*}
Hence, "The value of $\log_2 32$ is $\underline{5}$. This means that if we raise $\underline{2}$ to the $\underline{5^{th}}$ power, the result is $\underline{32}$.