Intermediate Algebra (12th Edition)

Published by Pearson
ISBN 10: 0321969359
ISBN 13: 978-0-32196-935-4

Chapter 8 - Section 8. - Equations Quadratic in Form - 8.3 Exercises - Page 528: 9

Answer

$\left\{-4,7\right\}$

Work Step by Step

Multiplying by the $LCD= x^2 ,$ the given equation $ 1-\dfrac{3}{x}-\dfrac{28}{x^2}=0 ,$ is equivalent to \begin{align*}\require{cancel} x^2\left(1-\dfrac{3}{x}-\dfrac{28}{x^2}\right)&=(0)x^2 \\\\ x^2(1)+x(-3)+1(-28)&=0 \\ x^2-3x-28&=0 .\end{align*} Using the factoring of trinomials, the factored form of the equation above is \begin{align*} (x-7)(x+4)&=0 .\end{align*} Equating each factor to zero (Zero Product Property) and solving for the variable, then \begin{array}{l|r} x-7=0 & x+4=0 \\ x=7 & x=-4 .\end{array} Checking the solutions in the given equation results to \begin{array}{l|r} \text{If }x=7: & \text{If }x=-4: \\\\ 1-\dfrac{3}{7}-\dfrac{28}{7^2}\overset{?}=0 & 1-\dfrac{3}{-4}-\dfrac{28}{(-4)^2}\overset{?}=0 \\\\ 1-\dfrac{3}{7}-\dfrac{28}{49}\overset{?}=0 & 1+\dfrac{3}{4}-\dfrac{28}{16}\overset{?}=0 \\\\ \dfrac{49}{49}-\dfrac{21}{49}-\dfrac{28}{49}\overset{?}=0 & \dfrac{16}{16}+\dfrac{12}{16}-\dfrac{28}{16}\overset{?}=0 \\\\ \dfrac{49-21-28}{49}\overset{?}=0 & \dfrac{16+12-28}{16}\overset{?}=0 \\\\ 0\overset{\checkmark}=0 & 0\overset{\checkmark}=0 .\end{array} Since both solutions satisfy the given equation, then the solution set of the equation $ 1-\dfrac{3}{x}-\dfrac{28}{x^2}=0 $ is $\left\{-4,7\right\}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.