Intermediate Algebra (12th Edition)

Published by Pearson
ISBN 10: 0321969359
ISBN 13: 978-0-32196-935-4

Chapter 8 - Section 8. - Equations Quadratic in Form - 8.3 Exercises - Page 528: 13

Answer

$\left\{-\dfrac{14}{17},5\right\}$

Work Step by Step

Multiplying by the $LCD= 35x(x+2) ,$ the given equation $ \dfrac{1}{x}+\dfrac{2}{x+2}=\dfrac{17}{35} ,$ is equivalent to \begin{align*}\require{cancel} 35x(x+2)\left(\dfrac{1}{x}+\dfrac{2}{x+2}\right)&=\left(\dfrac{17}{35}\right)35x(x+2) \\\\ 35(x+2)(1)+35x(2)&=17(x)(x+2) \\ 35x+70+70x&=17x^2+34x \\ 105x+70&=17x^2+34x \\ 0&=17x^2+(34x-105x)-70 \\ 0&=17x^2-71x-70 \\ 17x^2-71x-70&=0 .\end{align*} Using the factoring of trinomials, the factored form of the equation above is \begin{align*} (17x+14)(x-5)&=0 .\end{align*} Equating each factor to zero (Zero Product Property) and solving for the variable, then \begin{array}{l|r} 17x+14=0 & x-5=0 \\ 17x=-14 & x=5 \\\\ x=-\dfrac{14}{17} .\end{array} Checking the solutions by substitution in the given equation results to \begin{array}{l|r} \text{If }x=-\dfrac{14}{17}: & \text{If }x=5: \\\\ \dfrac{1}{-\frac{14}{17}}+\dfrac{2}{-\frac{14}{17}+2}\overset{?}=\dfrac{17}{35} & \dfrac{1}{5}+\dfrac{2}{5+2}\overset{?}=\dfrac{17}{35} \\\\ \dfrac{-17}{14}+\dfrac{2}{-\frac{14}{17}+\frac{34}{17}}\overset{?}=\dfrac{17}{35} & \dfrac{1}{5}+\dfrac{2}{7}\overset{?}=\dfrac{17}{35} \\\\ \dfrac{-17}{14}+\dfrac{2}{\frac{20}{17}}\overset{?}=\dfrac{17}{35} & \dfrac{7}{35}+\dfrac{10}{35}\overset{?}=\dfrac{17}{35} \\\\ \dfrac{-17}{14}+\dfrac{17}{10}\overset{?}=\dfrac{17}{35} & \dfrac{17}{35}\overset{\checkmark}=\dfrac{17}{35} \\\\ \dfrac{-85}{70}+\dfrac{119}{70}\overset{?}=\dfrac{17}{35} \\\\ \dfrac{34}{70}\overset{?}=\dfrac{17}{35} \\\\ \dfrac{17}{35}\overset{\checkmark}=\dfrac{17}{35} .\end{array} Since both solutions satisfy the given equation, then the solution set of the equation $ \dfrac{1}{x}+\dfrac{2}{x+2}=\dfrac{17}{35} $ is $\left\{-\dfrac{14}{17},5\right\}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.