Intermediate Algebra (12th Edition)

Published by Pearson
ISBN 10: 0321969359
ISBN 13: 978-0-32196-935-4

Chapter 8 - Section 8. - Equations Quadratic in Form - 8.3 Exercises - Page 528: 14

Answer

$\left\{-8,\dfrac{9}{11}\right\}$

Work Step by Step

Multiplying by the $LCD= 4m(m+9) ,$ the given equation $ \dfrac{2}{m}+\dfrac{3}{m+9}=\dfrac{11}{4} ,$ is equivalent to \begin{align*}\require{cancel} 4m(m+9)\left(\dfrac{2}{m}+\dfrac{3}{m+9}\right)&=\left(\dfrac{11}{4}\right)4m(m+9) \\\\ 4(m+9)(2)+4m(3)&=11(m)(m+9) \\ 8m+72+12m&=11m^2+99m \\ 0&=11m^2+(99m-8m-12m)-72 \\ 0&=11m^2+79m-72 \\ 11m^2+79m-72&=0 .\end{align*} Using the factoring of trinomials, the factored form of the equation above is \begin{align*} (11m-9)(m+8)&=0 .\end{align*} Equating each factor to zero (Zero Product Property) and solving for the variable, then \begin{array}{l|r} 11m-9=0 & m+8=0 \\ 11m=9 & m=-8 \\\\ m=\dfrac{9}{11} .\end{array} Checking the solutions by substitution in the given equation results to \begin{array}{l|r} \text{If }m=\dfrac{9}{11}: & \text{If }m=-8: \\\\ \dfrac{2}{\frac{9}{11}}+\dfrac{3}{\frac{9}{11}+9}\overset{?}=\dfrac{11}{4} & \dfrac{2}{-8}+\dfrac{3}{-8+9}\overset{?}=\dfrac{11}{4} \\\\ 2\div\dfrac{9}{11}+\dfrac{3}{\frac{9}{11}+\frac{99}{11}}\overset{?}=\dfrac{11}{4} & -\dfrac{1}{4}+\dfrac{3}{1}\overset{?}=\dfrac{11}{4} \\\\ 2\cdot\dfrac{11}{9}+\dfrac{3}{\frac{108}{11}}\overset{?}=\dfrac{11}{4} & -\dfrac{1}{4}+\dfrac{12}{4}\overset{?}=\dfrac{11}{4} \\\\ \dfrac{22}{9}+3\div\dfrac{108}{11}\overset{?}=\dfrac{11}{4} & \dfrac{11}{4}\overset{\checkmark}=\dfrac{11}{4} \\\\ \dfrac{22}{9}+3\cdot\dfrac{11}{108}\overset{?}=\dfrac{11}{4} \\\\ \dfrac{22}{9}+\cancelto13\cdot\dfrac{11}{\cancelto{36}{108}}\overset{?}=\dfrac{11}{4} \\\\ \dfrac{22}{9}+\dfrac{11}{36}\overset{?}=\dfrac{11}{4} \\\\ \dfrac{22}{9}\cdot\dfrac{4}{4}+\dfrac{11}{36}\overset{?}=\dfrac{11}{4} \\\\ \dfrac{88}{36}+\dfrac{11}{36}\overset{?}=\dfrac{11}{4} \\\\ \dfrac{99}{36}\overset{?}=\dfrac{11}{4} \\\\ \dfrac{\cancelto{11}{99}}{\cancelto{4}{36}}\overset{?}=\dfrac{11}{4} \\\\ \dfrac{11}{4}\overset{\checkmark}=\dfrac{11}{4} .\end{array} Since both solutions satisfy the given equation, then the solution set of the equation $ \dfrac{2}{m}+\dfrac{3}{m+9}=\dfrac{11}{4} $ is $\left\{-8,\dfrac{9}{11}\right\}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.