Intermediate Algebra (12th Edition)

Published by Pearson
ISBN 10: 0321969359
ISBN 13: 978-0-32196-935-4

Chapter 8 - Section 8. - Equations Quadratic in Form - 8.3 Exercises - Page 528: 15

Answer

$\left\{-\dfrac{11}{7},0\right\}$

Work Step by Step

Multiplying by the $LCD= 2(x+1)(x+2) ,$ the given equation $ \dfrac{2}{x+1}+\dfrac{3}{x+2}=\dfrac{7}{2} ,$ is equivalent to \begin{align*}\require{cancel} 2(x+1)(x+2)\left(\dfrac{2}{x+1}+\dfrac{3}{x+2}\right)&=\left(\dfrac{7}{2}\right)2(x+1)(x+2) \\\\ 2(x+2)(2)+2(x+1)(3)&=7(x+1)(x+2) \\ 4x+8+6x+6&=7(x^2+3x+2) &(\text{use }(a+b)(c+d)=ac+ad+bc+bd) \\ 10x+14&=7x^2+21x+14 \\ 0&=7x^2+(21x-10x)+(14-14) \\ 0&=7x^2+11x \\ 7x^2+11x&=0 .\end{align*} Factoring the $GCF=x,$ the equation above is equivalent to \begin{align*} x(7x+11)&=0 .\end{align*} Equating each factor to zero (Zero Product Property) and solving for the variable, then \begin{array}{l|r} x=0 & 7x+11=0 \\ & 7x=-11 \\\\ & x=-\dfrac{11}{7} .\end{array} Checking the solutions by substitution in the given equation results to \begin{array}{l|r} \text{If }x=0: & \text{If }x=-\dfrac{11}{7}: \\\\ \dfrac{2}{0+1}+\dfrac{3}{0+2}\overset{?}=\dfrac{7}{2} & \dfrac{2}{-\frac{11}{7}+1}+\dfrac{3}{-\frac{11}{7}+2}\overset{?}=\dfrac{7}{2} \\\\ \dfrac{2}{1}+\dfrac{3}{2}\overset{?}=\dfrac{7}{2} & \dfrac{2}{-\frac{11}{7}+\frac{7}{7}}+\dfrac{3}{-\frac{11}{7}+\frac{14}{7}}\overset{?}=\dfrac{7}{2} \\\\ \dfrac{4}{2}+\dfrac{3}{2}\overset{?}=\dfrac{7}{2} & \dfrac{2}{-\frac{4}{7}}+\dfrac{3}{\frac{3}{7}}\overset{?}=\dfrac{7}{2} \\\\ \dfrac{7}{2}\overset{\checkmark}=\dfrac{7}{2} & 2\div\left(-\dfrac{4}{7}\right)+3\div\dfrac{3}{7}\overset{?}=\dfrac{7}{2} \\\\ & 2\cdot\left(-\dfrac{7}{4}\right)+3\cdot\dfrac{7}{3}\overset{?}=\dfrac{7}{2} \\\\ & \cancelto12\cdot\left(-\dfrac{7}{\cancelto24}\right)+\cancel3\cdot\dfrac{7}{\cancel3}\overset{?}=\dfrac{7}{2} \\\\ & -\dfrac{7}{2}+7\overset{?}=\dfrac{7}{2} \\\\ & -\dfrac{7}{2}+\dfrac{14}{2}\overset{?}=\dfrac{7}{2} \\\\ & \dfrac{7}{2}\overset{\checkmark}=\dfrac{7}{2} .\end{array} Since both solutions satisfy the given equation, then the solution set of the equation $ \dfrac{2}{x+1}+\dfrac{3}{x+2}=\dfrac{7}{2} $ is $\left\{-\dfrac{11}{7},0\right\}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.