Intermediate Algebra (12th Edition)

Published by Pearson
ISBN 10: 0321969359
ISBN 13: 978-0-32196-935-4

Chapter 8 - Section 8. - Equations Quadratic in Form - 8.3 Exercises - Page 528: 20

Answer

$\left\{-\dfrac{7}{3},\dfrac{1}{3}\right\}$

Work Step by Step

Multiplying by the $LCD= (3z+2)^2 ,$ the given equation $ 1+\dfrac{2}{3z+2}=\dfrac{15}{(3z+2)^2} ,$ is equivalent to \begin{align*}\require{cancel} (3z+2)^2\left(1+\dfrac{2}{3z+2}\right)&=\left(\dfrac{15}{(3z+2)^2}\right)(3z+2)^2 \\\\ (3z+2)^2(1)+(3z+2)(2)&=15(1) \\ (9z^2+12z+4)+(3z+2)(2)&=15 &(\text{use }(a+b)^2=a^2+2ab+b^2) \\ 9z^2+12z+4+(6z+4)&=15 &(\text{use Distributive Property}) \\ 9z^2+(12z+6z)+(4+4-15)&=0 \\ 9z^2+18z-7&=0 .\end{align*} Using factoring of trinomials, the equation above is equivalent to \begin{align*} (3z+7)(3z-1)&=0 .\end{align*} Equating each factor to zero (Zero Product Property) and solving for the variable, then \begin{array}{l|r} 3z+7=0 & 3z-1=0 \\ 3z=-7 & 3z=1 \\\\ z=-\dfrac{7}{3} & z=\dfrac{1}{3} .\end{array} Checking the solutions by substitution in the given equation results to \begin{array}{l|r} \text{If }z=-\dfrac{7}{3}: & \text{If }z=\dfrac{1}{3}: \\\\ 1+\dfrac{2}{3\left(-\frac{7}{3}\right)+2}\overset{?}=\dfrac{15}{(3\left(-\frac{7}{3}\right)+2)^2} & 1+\dfrac{2}{3\left(\frac{1}{3}\right)+2}\overset{?}=\dfrac{15}{(3\left(\frac{1}{3}\right)+2)^2} \\\\ 1+\dfrac{2}{-7+2}\overset{?}=\dfrac{15}{(-7+2)^2} & 1+\dfrac{2}{1+2}\overset{?}=\dfrac{15}{(1+2)^2} \\\\ 1+\dfrac{2}{-5}\overset{?}=\dfrac{15}{(-5)^2} & 1+\dfrac{2}{3}\overset{?}=\dfrac{15}{(3)^2} \\\\ 1-\dfrac{2}{5}\overset{?}=\dfrac{15}{25} & 1+\dfrac{2}{3}\overset{?}=\dfrac{15}{9} \\\\ \dfrac{5}{5}-\dfrac{2}{5}\overset{?}=\dfrac{\cancelto3{15}}{\cancelto5{25}} & \dfrac{3}{3}+\dfrac{2}{3}\overset{?}=\dfrac{\cancelto5{15}}{\cancelto39} \\\\ \dfrac{3}{5}\overset{\checkmark}=\dfrac{3}{5} & \dfrac{5}{3}\overset{\checkmark}=\dfrac{5}{3} .\end{array} Since both solutions satisfy the given equation, then the solution set of the equation $ 1+\dfrac{2}{3z+2}=\dfrac{15}{(3z+2)^2} $ is $\left\{-\dfrac{7}{3},\dfrac{1}{3}\right\}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.