Intermediate Algebra (12th Edition)

Published by Pearson
ISBN 10: 0321969359
ISBN 13: 978-0-32196-935-4

Chapter 8 - Section 8. - Equations Quadratic in Form - 8.3 Exercises - Page 528: 19

Answer

$\left\{-\dfrac{8}{3},-1\right\}$

Work Step by Step

Multiplying by the $LCD= (t+2)^2 ,$ the given equation $ 3=\dfrac{1}{t+2}+\dfrac{2}{(t+2)^2} ,$ is equivalent to \begin{align*}\require{cancel} (t+2)^2(3)&=\left(\dfrac{1}{t+2}+\dfrac{2}{(t+2)^2}\right)(t+2)^2 \\\\ (t^2+4t+4)(3)&=1(t+2)+2(1) &(\text{use }(a+b)^2=a^2+2ab+b^2) \\ 3t^2+12t+12&=t+2+2 \\ 3t^2+(12t-t)+(12-2-2)&=0 \\ 3t^2+11t+8&=0 .\end{align*} Using factoring of trinomials, the equation above is equivalent to \begin{align*} (3t+8)(t+1)&=0 .\end{align*} Equating each factor to zero (Zero Product Property) and solving for the variable, then \begin{array}{l|r} 3t+8=0 & t+1=0 \\ 3t=-8 & t=-1 \\\\ t=-\dfrac{8}{3} .\end{array} Checking the solutions by substitution in the given equation results to \begin{array}{l|r} \text{If }t=-\dfrac{8}{3}: & \text{If }t=-1: \\\\ 3\overset{?}=\dfrac{1}{-\frac{8}{3}+2}+\dfrac{2}{(-\frac{8}{3}+2)^2} & 3\overset{?}=\dfrac{1}{-1+2}+\dfrac{2}{(-1+2)^2} \\\\ 3\overset{?}=\dfrac{1}{-\frac{8}{3}+\frac{6}{3}}+\dfrac{2}{\left(-\frac{8}{3}+\frac{6}{3}\right)^2} & 3\overset{?}=\dfrac{1}{1}+\dfrac{2}{(1)^2} \\\\ 3\overset{?}=\dfrac{1}{-\frac{2}{3}}+\dfrac{2}{\left(-\frac{2}{3}\right)^2} & 3\overset{?}=1+2 \\\\ 3\overset{?}=1\cdot\left(-\dfrac{3}{2}\right)+\dfrac{2}{\frac{4}{9}} & 3\overset{\checkmark}=3 \\\\ 3\overset{?}=-\dfrac{3}{2}+2\cdot\dfrac{9}{4} \\\\ 3\overset{?}=-\dfrac{3}{2}+\dfrac{9}{2} \\\\ 3\overset{?}=\dfrac{6}{2} \\\\ 3\overset{\checkmark}=3 .\end{array} Since both solutions satisfy the given equation, then the solution set of the equation $ 3=\dfrac{1}{t+2}+\dfrac{2}{(t+2)^2} $ is $\left\{-\dfrac{8}{3},-1\right\}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.