Elementary Linear Algebra 7th Edition

Published by Cengage Learning
ISBN 10: 1-13311-087-8
ISBN 13: 978-1-13311-087-3

Chapter 7 - Eigenvalues and Eigenvectors - 7.1 Eigenvalues and Eigenvectors - 7.1 Exercises - Page 350: 3

Answer

See below.

Work Step by Step

Because $\begin{bmatrix} 1& 1 \\ 1& 1\\ \end{bmatrix} \begin{bmatrix} 1 \\ -1\\ \end{bmatrix} =\begin{bmatrix} 0 \\ 0\\ \end{bmatrix} =0 \begin{bmatrix} 1 \\ -1\\ \end{bmatrix} $ and $\begin{bmatrix} 1& 1 \\ 1& 1\\ \end{bmatrix} \begin{bmatrix} 1 \\ 1\\ \end{bmatrix} =\begin{bmatrix} 2 \\ 2\\ \end{bmatrix} =2 \begin{bmatrix} 1 \\ 1\\ \end{bmatrix} $ we have proved what we wanted to.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.