Elementary Linear Algebra 7th Edition

Published by Cengage Learning
ISBN 10: 1-13311-087-8
ISBN 13: 978-1-13311-087-3

Chapter 7 - Eigenvalues and Eigenvectors - 7.1 Eigenvalues and Eigenvectors - 7.1 Exercises - Page 350: 13

Answer

a) $x$ is an eigenvector of $A$. b) $x$ is not an eigenvector of $A$. c) $x$ is an eigenvector of $A$. d) $x$ is an eigenvector of $A$.

Work Step by Step

Let $A$ be any $n\times n$ matrix. Let $\lambda$ be some scalar for which there exists a non zero vector $x$ such that $Ax=\lambda x$. Then $\lambda$ is called an eigenvalue of $A$ and $x$ is called the corresponding eigenvalue. Given $A= \left[ {\begin{array}{*{20}{c}} {-1}&-1&1\\ -2&0&-2\\ 3&-3&1 \end{array}} \right]$. a) Given $x = \left[ {\begin{array}{*{20}{c}} 2\\ -4\\ 6 \end{array}} \right]$, then $Ax = \left[ {\begin{array}{*{20}{c}} {-1}&-1&1\\ -2&0&-2\\ 3&-3&1 \end{array}} \right]\left[ {\begin{array}{*{20}{c}} 2\\ -4\\ 6 \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} {8}\\ {-16}\\ 24 \end{array}} \right]$. Observe that $\left[ {\begin{array}{*{20}{c}} {8}\\ {-16}\\ 24 \end{array}} \right] =4 \left[ {\begin{array}{*{20}{c}} 2\\ -4\\ 6 \end{array}} \right]$ Therefore, $x$ is an eigenvector of $A$. b) Given $x = \left[ {\begin{array}{*{20}{c}} 2\\ 0\\ 6 \end{array}} \right]$, then $Ax = \left[ {\begin{array}{*{20}{c}} {-1}&-1&1\\ -2&0&-2\\ 3&-3&1 \end{array}} \right]\left[ {\begin{array}{*{20}{c}} 2\\ 0\\ 6 \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} {4}\\ {-16}\\ 12 \end{array}} \right]$. Observe that $\left[ {\begin{array}{*{20}{c}} {4}\\ {-16}\\ 12 \end{array}} \right] \neq \lambda\left[ {\begin{array}{*{20}{c}} 2\\ 0\\ 6 \end{array}} \right]$ for any scalar $\lambda \in R$ Therefore, $x$ is an eigenvector of $A$. c) Given $x = \left[ {\begin{array}{*{20}{c}} 2\\ 2\\ 0 \end{array}} \right]$, then $Ax = \left[ {\begin{array}{*{20}{c}} {-1}&-1&1\\ -2&0&-2\\ 3&-3&1 \end{array}} \right]\left[ {\begin{array}{*{20}{c}} 2\\ 2\\ 0 \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} {-4}\\ {-4}\\ 0 \end{array}} \right]$. Observe that $\left[ {\begin{array}{*{20}{c}} {-4}\\ {-4}\\ 0 \end{array}} \right] ={-2} \left[ {\begin{array}{*{20}{c}} 2\\ 2\\ 0 \end{array}} \right]$ Therefore, $x$ is an eigenvector of $A$. d) Given $x = \left[ {\begin{array}{*{20}{c}} -1\\ 0\\ 1 \end{array}} \right]$, then $Ax = \left[ {\begin{array}{*{20}{c}} {-1}&-1&1\\ -2&0&-2\\ 3&-3&1 \end{array}} \right]\left[ {\begin{array}{*{20}{c}} -1\\ 0\\ 1 \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} {2}\\ {0}\\ -2 \end{array}} \right]$. Observe that $\left[ {\begin{array}{*{20}{c}} {2}\\ {0}\\ -2 \end{array}} \right] ={-2} \left[ {\begin{array}{*{20}{c}} -1\\ 0\\ 1 \end{array}} \right]$ Therefore, $x$ is an eigenvector of $A$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.