Elementary Linear Algebra 7th Edition

Published by Cengage Learning
ISBN 10: 1-13311-087-8
ISBN 13: 978-1-13311-087-3

Chapter 3 - Determinants - 3.3 Properties of Determinants - 3.3 Exercises - Page 126: 59

Answer

$A=\begin{bmatrix} 0& 0 \\ 0&0\\ \end{bmatrix}$ and $B= \begin{bmatrix} 1& 0 \\ 0&1\\ \end{bmatrix}$

Work Step by Step

Let $A=\begin{bmatrix} 0& 0 \\ 0&0\\ \end{bmatrix}$ and $B= \begin{bmatrix} 1& 0 \\ 0&1\\ \end{bmatrix}$ then $A+B= \begin{bmatrix} 1& 0 \\ 0&1\\ \end{bmatrix}$ We know that for a matrix $ \left[\begin{array}{rr} a & b \\ c &d \\ \end{array} \right] $ the determinant, $D=ad-bc.$ Hence $|A|=0\cdot0-0\cdot0=0-0=0$, $|B|=1\cdot1-0\cdot0=1-0=1$ and $|A+B|=1\cdot1-0\cdot0=1-0=1$, thus $|A|+|B|=|A+B|$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.