Elementary Linear Algebra 7th Edition

Published by Cengage Learning
ISBN 10: 1-13311-087-8
ISBN 13: 978-1-13311-087-3

Chapter 3 - Determinants - 3.3 Properties of Determinants - 3.3 Exercises - Page 126: 52

Answer

(a) $|A B|=20$ (b) $|2 A|=32$ (c) the matrices $A$ and $B$ are non-singular because $|A|=4$ and $|B|=5$ (the determinants of the matrices $A$ and $B$ do not equal zero) (d) $\left|B^{-1}\right|=1/5$ and $\left|A^{-1}\right|=1/4$ (e) $\left|(A B)^{T}\right|=20$

Work Step by Step

Given $|A|=4$ and $|B|=5,$ then (a) $|A B|=|A||B|=4 * 5=20$ (b) Since the matrix $A$ is a square matrix of order $3,$ then $|2 A|=\left(2^{\wedge} 3\right) *|A|=8 *|A|=8 *$ $4=32$ (c) the matrices $A$ and $B$ are non-singular because $|A|=4$ and $|B|=5$ (the determinants of the matrices $A$ and $B$ do not equal zero) (d) since the matrices $A$ and $B$ are non-singular, then they are invertible. So, $A A^{-1}=I$ and then $\left|A A^{-1}\right|=|A|\left|A^{-1}\right|=1$ Then $\left|A^{-1}\right|=\frac{1}{|A|}=\frac{1}{4}$ Also, we have that, $B B^{-1}=I$ and then $\left|B B^{-1}\right|=|B|\left|B^{-1}\right|=1$ Then $\left|B^{-1}\right|=\frac{1}{|B|}=\frac{1}{5}$ (e) $\left|(A B)^{T}\right|=\left|B^{T} A^{T}\right|=\left|B^{T}\right|\left|A^{T}\right|=|B||A|=5 * 4=20$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.