Elementary Linear Algebra 7th Edition

Published by Cengage Learning
ISBN 10: 1-13311-087-8
ISBN 13: 978-1-13311-087-3

Chapter 3 - Determinants - 3.3 Properties of Determinants - 3.3 Exercises - Page 126: 56

Answer

$k=-1$ or $k=-4/3$.

Work Step by Step

A matrix is singular if and only if its determinant is $0$. We know that for a matrix $ \left[\begin{array}{rrr} a & b & c \\ d &e & f \\ g &h & i \\ \end{array} \right] $ the determinant, $D=a(ei-fh)-b(di-fg)+c(dh-eg).$ Hence here $D=1(0\cdot (-4)-(-k)\cdot1)-k((-2)\cdot (-4)-(-k)\cdot3)+2((-2)\cdot1-0\cdot3)=1(k)-k(8+3k)+2(-2)=-3k^2-7k-4=0\\3k^2+7k+4=0\\(k+1)(3k+4)=0.$ Thus $k=-1$ or $k=-4/3$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.