Elementary Linear Algebra 7th Edition

Published by Cengage Learning
ISBN 10: 1-13311-087-8
ISBN 13: 978-1-13311-087-3

Chapter 3 - Determinants - 3.3 Properties of Determinants - 3.3 Exercises - Page 126: 38

Answer

$\left|A^{T}\right|=-74$, $\left|A^{2}\right|=5476$ $\left|A A^{T}\right|=5476 \quad, \quad|2 A|=-296 $ $\left|A^{-1}\right|=\frac{-1}{74}$

Work Step by Step

Given the matrix $A=\left[\begin{array}{ll}-4 & 10 \\ 5 & 6 \end{array}\right]$ We have $A^{T}=\left[\begin{array}{cc}-4 & 5 \\ 10 & 6\end{array}\right] $ and $2 A=\left[\begin{array}{cc}-8 & 20 \\ 10 & 12\end{array}\right]$ We also have $|A|=-24-50=-74, \left|A^{T}\right|=-24-50=-74$ and $\left|A^{2}\right|=|A| |A|=74 * 74=5476$ We obtain $\quad\left|A A^{T}\right|=|A|\left|A^{T}\right|=74 * 74=5476 \quad, \quad|2 A|=-(8*12)-(20*10)=-296 $ and $\left|A^{-1}\right|=\frac{1}{|A|}=\frac{-1}{74}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.