Differential Equations and Linear Algebra (4th Edition)

Published by Pearson
ISBN 10: 0-32196-467-5
ISBN 13: 978-0-32196-467-0

Chapter 9 - Systems of Differential Equations - 9.2 Vector Formulation - Problems - Page 592: 9

Answer

See below

Work Step by Step

Given: $x_1(t)=\begin{bmatrix} \sin^2 t\\ \cos ^2t\\ 2\\ \end{bmatrix}$ $x_2(t)=\begin{bmatrix} 2\cos^2 t\\ 2\sin^2t\\ 1 \end{bmatrix}$ $x_3(t)=\begin{bmatrix} 2\\ 2\\ 5 \end{bmatrix}$ We can see $2x_1(t)+x_2(t)=2\begin{bmatrix} \sin^2 t\\ \cos ^2t\\ 2\\ \end{bmatrix}+\begin{bmatrix} 2\cos^2 t\\ 2\sin^2t\\ 1\\ \end{bmatrix}=\begin{bmatrix} 2\\ 2\\ 5\\ \end{bmatrix}=x_3(t)$ Hence, $x_1(t),x_2(t)$ and $x_3(t)$ are linearly independent on $(-\infty,\infty)$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.