Differential Equations and Linear Algebra (4th Edition)

Published by Pearson
ISBN 10: 0-32196-467-5
ISBN 13: 978-0-32196-467-0

Chapter 9 - Systems of Differential Equations - 9.2 Vector Formulation - Problems - Page 592: 5

Answer

See below

Work Step by Step

Given: $x_1(t)=\begin{bmatrix} \sin t\\ \cos t\\ 1 \end{bmatrix}$ $x_2(t)=\begin{bmatrix} t\\ 1-t\\ 1 \end{bmatrix}$ $x_3(t)=\begin{bmatrix} \sinh t\\ \cosh t\\ 1 \end{bmatrix}$ Obtain: $W_{[x_1,x_2,x_3]}=\begin{vmatrix} \sin t & t & \sinh t\\ \cos t & 1-t & \cosh t\\ 1 & 1 & 1 \end{vmatrix}\\ =\sin t-t\sin t-t\cos t+t\sinh t+\cos t -\sinh t+t\cosh t-\sin t\cosh t$ Take $t=1 \rightarrow W_{[x_1,x_2,x_3]}(2)=6.14$ Since $6.14 \ne 0$ Hence, $x_1(t),x_2(t)$ and $x_3(t)$ are linearly independent on $(-\infty,\infty)$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.