Differential Equations and Linear Algebra (4th Edition)

Published by Pearson
ISBN 10: 0-32196-467-5
ISBN 13: 978-0-32196-467-0

Chapter 9 - Systems of Differential Equations - 9.2 Vector Formulation - Problems - Page 592: 3

Answer

See below

Work Step by Step

Given: $x_1(t)=\begin{bmatrix} t+1\\ t-1\\ 2t \end{bmatrix}$ $x_2(t)=\begin{bmatrix} e^t\\ e^{2t}\\ e^{3t} \end{bmatrix}$ $x_3(t)=\begin{bmatrix} 1\\ \sin t\\ \cos t \end{bmatrix}$ Obtain: $W_{[x_1,x_2,x_3]}=\begin{vmatrix} t+1 & e^t & 1\\ t-1 & e^{2t} \sin t\\ 2t & e^{3t} & \cos t \end{vmatrix}=t^3-t^2$ If we take $W_{[x_1,x_2]}(0)=\begin{vmatrix} 1 & 1 & 1\\ -1 & 1 & 0\\ 0 & 1 & 1 \end{vmatrix}=\begin{vmatrix} 1 & 0\\ 1 & 1 \end{vmatrix}-\begin{vmatrix} -1 & 0\\ 0 & 1 \end{vmatrix}+\begin{vmatrix} -1 & 1 \\ 0 & 1 \end{vmatrix}=1+1-1=1 \ne 0$ for all $t \in (-\infty, \infty)$ Hence, $x_1(t), x_2(t)$ and $x_3(t)$ are linearly independent on $(-\infty,\infty)$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.