Differential Equations and Linear Algebra (4th Edition)

Published by Pearson
ISBN 10: 0-32196-467-5
ISBN 13: 978-0-32196-467-0

Chapter 4 - Vector Spaces - 4.6 Bases and Dimension - Problems - Page 309: 32

Answer

See answer below

Work Step by Step

We are given: $A_1=\begin{bmatrix} 1 & 3\\ -1 & 2 \end{bmatrix}$ $A_2=\begin{bmatrix} 0 & 0\\ 0 & 0 \end{bmatrix} $ $A_3=\begin{bmatrix} -1 & 4\\ 1 & 1 \end{bmatrix}$ $A_4=\begin{bmatrix} 5 & -6\\ -5 & 1 \end{bmatrix}$ From what we can see: $2A_1-3A_3=2\begin{bmatrix} 1 & 3\\ -1 & 2 \end{bmatrix}-3\begin{bmatrix} -1 & 4\\ 1 & 1 \end{bmatrix}=\begin{bmatrix} 2 & 6\\ -2 & 4 \end{bmatrix}+\begin{bmatrix} 3 & -12\\ -3 & -3 \end{bmatrix}=\begin{bmatrix} 5 & -6\\ -5 & 1 \end{bmatrix}=A_4$ Let $c_1,c_2,c_3$ and $c_4$ be scarlars, we obtain: $c_1A_1+c_2A_2+c_3A_3+c_4A_4=c_1A_1+c_3A_3+c_4(2A_1-3A_3)=c_1A_1+c_3A_3+2c_4A_1-3c_4A_3=(c_1+2c_4)A_1+(c_3-3c_4)A_3$ Since any linear combination of $A_1, A_2, A_3, A_4$ can be written as a linear combination of $A_1$ and $A_3$, span $\{A_1,A_2,A_3,A_4\} \subset$ span $\{A_1,A_3\}$. And $\{A_1,A_3\} \subset \{A_1,A_2,A_3,A_4\} \rightarrow $ span $\{A_1,A_3\} \subset$ span $\{A_1,A_2,A_3,A_4\} \rightarrow $ span $\{A_1,A_3\}=$ span $\{A_1,A_2,A_3,A_4\}$ We can see that $A_1$ and $A_3$ are linearly dependent in $M_2(R)$ Hence, $\{A_1,A_3\}$ is a linearly independent set for $S$ and $\{A_1,A_3\}$ is also a basis for $S$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.