Differential Equations and Linear Algebra (4th Edition)

Published by Pearson
ISBN 10: 0-32196-467-5
ISBN 13: 978-0-32196-467-0

Chapter 4 - Vector Spaces - 4.6 Bases and Dimension - Problems - Page 309: 29

Answer

See below

Work Step by Step

Let $S=\{A \in M_2(R):tr(A)=0\}$ Assume $A_1=\begin{bmatrix} 1 & 0 \\0 & -1 \end{bmatrix}\\ A_2=\begin{bmatrix} 0 & 1 \\0 & 0 \end{bmatrix}\\ A_3=\begin{bmatrix} 0 & 0 \\1 & 0 \end{bmatrix} \in S$ Let $a,b,c$ be scalars and matrix $A=\begin{bmatrix} a & b \\c & -a \end{bmatrix}$ then obtain $a\begin{bmatrix} 1 & 0 \\0 & -1 \end{bmatrix}+b\begin{bmatrix} 0 & 1 \\0 & 0 \end{bmatrix}+c\begin{bmatrix} 0 & 0 \\1 & 0 \end{bmatrix}\\ =\begin{bmatrix} a & 0 \\0 & -a \end{bmatrix}+\begin{bmatrix} 0 & b \\0 & 0 \end{bmatrix}+\begin{bmatrix} 0 & 0 \\c & 0 \end{bmatrix}\\ =\begin{bmatrix} a & b \\c & -a \end{bmatrix}\\ =A$ Thus, any matrix $A \in S$ can be written as a linear combination of $A_1,A_2, A_3$ then $\{A_1,A_2,A_3\}$ spans $S$. Obtain $aA_1+bA_2+cA_3=\begin{bmatrix} 0 & 0 \\0 & 0 \end{bmatrix}\\ a\begin{bmatrix} 1 & 0 \\0 & -1 \end{bmatrix}+b\begin{bmatrix} 0 & 1 \\0 & 0 \end{bmatrix}+c\begin{bmatrix} 0 & 0 \\1 & 0 \end{bmatrix}\\=\begin{bmatrix} a & 0 \\0 & -a \end{bmatrix}+\begin{bmatrix} 0 & b \\0 & 0 \end{bmatrix}+\begin{bmatrix} 0& 0 \\c & 0 \end{bmatrix}\\ =\begin{bmatrix} a & b \\c & -a \end{bmatrix}$ From that we have $a=b=c=0$ Hence, the set $\{A_1,A_2,A_3\}$ is linearly independent in $M_2(R)$ Consequently, $\{A_1,A_2,A_3\}$ is a basic for $M_2(R)$ and $\dim[S]=3$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.