Differential Equations and Linear Algebra (4th Edition)

Published by Pearson
ISBN 10: 0-32196-467-5
ISBN 13: 978-0-32196-467-0

Chapter 4 - Vector Spaces - 4.6 Bases and Dimension - Problems - Page 309: 19

Answer

$N(A)=\{ (X_1,X_2,X_3,X_4,X_5) \in R^5: X_1=\frac{1}{8}(9X_2-3X_3-3X_4+5X_5)\}$

Work Step by Step

We are given: $A=\begin{bmatrix} 8 & -9 & 3 & 3 & 5 \end{bmatrix}$ Since $A$ is $1 \times 5$ matrix, X is $5 \times 1$ Set $AX=0 \rightarrow \begin{bmatrix} 8 & -9 & 3 & 3 & -5 \end{bmatrix}\begin{bmatrix} X_1 \\ X_2 \\ X_3 \\ X_4 \\ X_5 \end{bmatrix}=0$ $\rightarrow 8X_1-9X_2+3X_3+3X_4-5X_5=0$ $X_1=\frac{1}{8}(9X_2-3X_3-3X_4+5X_5)$ Hence null space of the given matrix $A$ is: $N(A)=\{ (X_1,X_2,X_3,X_4,X_5) \in R^5: X_1=\frac{1}{8}(9X_2-3X_3-3X_4+5X_5)\}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.