Differential Equations and Linear Algebra (4th Edition)

Published by Pearson
ISBN 10: 0-32196-467-5
ISBN 13: 978-0-32196-467-0

Chapter 4 - Vector Spaces - 4.6 Bases and Dimension - Problems - Page 309: 31

Answer

See below

Work Step by Step

Let $S$ be the subspace of $R^3$ spanned by the vectors $f_1(x) =e^x \\ f_2(x)=e^{-x}\\f_3(x) = \sinh(x)$. We can see that $\frac{1}{2}f_1(x)\\=\frac{1}{2}e^x-\frac{1}{2}e^{-x}\\=\frac{e^x-e^{-x}}{2}\\ =f_3(x)$ Then we have $f(x)=af_1(x)+bf_2(x)+cf_3(x)\\ =af_1(x)+bf_2(x)+c(\frac{1}{2}f_1(x)-\frac{1}{2}f_2(x))\\ =af_1(x)+bf_2(x)+\frac{1}{2}cf_1(x)-\frac{1}{2}cf_2(x)\\ =(a+\frac{1}{2}c)f_1(x)+(b-\frac{1}{2}c)f_2(x)\\ \rightarrow f \in span \{f_1,f_2\}\\ \rightarrow span\{f_1,f_2,f_3\} \subset span \{f_1,f_2\}$ Since $\{f_1,f_2\} \subset \{f_1,f_2,f_3\}\\ \rightarrow span\{f_1,f_2\} \subset \{f_1,f_2,f_3\}\\ \rightarrow S=span\{f_1,f_2\}$ Let $a,b$ be scalars such that $ae^x+be^{-x}=0 \forall x \in (-\infty,\infty)\\ \rightarrow ae^x-be^{-x}=0 \forall x \in(-\infty, \infty)$ Substitute $x=0 \rightarrow a+b=0, a-b=0$ then $a+b+a-b=0\\ 2a=0\\ a=0\\ \rightarrow b=0$ Hence, the linear combination of $f_1$ and $f_2$ is trivial then $f_1,f_2$ are linearly independent in $(-\infty, \infty)$ Hence, $\{f_1,f_2\}$ is a basic for $S \rightarrow \dim[S]=2 $
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.