Differential Equations and Linear Algebra (4th Edition)

Published by Pearson
ISBN 10: 0-32196-467-5
ISBN 13: 978-0-32196-467-0

Chapter 4 - Vector Spaces - 4.6 Bases and Dimension - Problems - Page 309: 20

Answer

$N(A)=1$

Work Step by Step

We are given: $A=\begin{bmatrix} 1 & 3 -2 & -6 \end{bmatrix}$ Since $A$ is $1 \times 5$ matrix, X is $5 \times 1$ Set $AX=0 \rightarrow \begin{bmatrix} 1 & 3 -2 & -6 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}=0$ $\rightarrow \begin{bmatrix} x+3y\\ -2x-6y \end{bmatrix}=0$ We have $x+3=0$ and $-2x-6y=0$ $\rightarrow x=-3y$ $v=(-3y,y)=y(-3,1)$ means that $v \in $ span $\{ (-3,1) \}$ and the $N(A)$ is a subset of span $\{-3,1\}$ We can obtain: $\begin{bmatrix} 1 & 3\\ -2 & -6 \end{bmatrix}\begin{bmatrix} -3a \\ a \end{bmatrix}=\begin{bmatrix} -3a+ 3a\\ 6a-6a \end{bmatrix}=\begin{bmatrix} 0\\ 0 \end{bmatrix}$ Hence the null space of $A$ is span $\{(-3,1)\}$ and since the set of vectors is linearly independent we have $\{-3, 1\}$ is a basis for the null space of $A$. Thus $N(A)=1$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.