Differential Equations and Linear Algebra (4th Edition)

Published by Pearson
ISBN 10: 0-32196-467-5
ISBN 13: 978-0-32196-467-0

Chapter 4 - Vector Spaces - 4.6 Bases and Dimension - Problems - Page 309: 27

Answer

See below

Work Step by Step

Consider $p_0(x)=x^3\\ p_1(x)=1+x^3\\ p_2(x)=x+x^3\\ p_3(x)=x^2+x^3 \in P_3$ Obtain the matrix $A=\begin{bmatrix} x^3 & 1+x^3 & x+x^3 & x^2+x^3\\ 3x^2 & 3x^2 & 1+3x^2 & 2x+3x^2 \\6x & 6x & 6x & 2+6x\\6 & 6 & 6 & 6 \end{bmatrix}\approx \begin{bmatrix} -1 & 1+x^3 & x+x^3 & x^2+x^3\\ 0 & 3x^2 & 1+3x^2 & 2x+3x^2 \\0 & 6x & 6x & 2+6x\\0 & 6 & 6 & 6 \end{bmatrix} \approx \begin{bmatrix} -1 & 1-x & x+x^3 & x^2+x^3\\ 0 & -1 & 1+3x^2 & 2x+3x^2 \\0 &0 & 6x & 2+6x\\0 & 0 & 6 & 6 \end{bmatrix}\approx \begin{bmatrix} -1 & 1-x & x-x^2 & x^2+x^3\\ 0 & -1 & 1-2x & 2x+3x^2 \\0 &0 & -2 & 2+6x\\0 & 0 &0 & 6 \end{bmatrix} \\ \rightarrow \det =-12$ Since $\det (A(x))=W[p_0,p_1,p_2,p_3]\\ \rightarrow W[p_0,p_1,p_2,p_3]=-12\ne 0$ Thus, the set of vectors $\{p_0,p_1,p_2,p_3\}$ is linearly independent on any interval. Then the set is also a linearly independent set in $P_3$ We know that $dim [P_3]=4 \rightarrow \{p_0,p_1,p_2,p_3\}$ is a basic for $P_3$ Hence, $\{p_0,p_1,p_2,p_3\}$ is a basic for $P_3(R)$ whose elements all have the same degree.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.