#### Answer

$5, 3, 1, -1, -3$

#### Work Step by Step

$\bf{\text{Solution Outline:}}$
To find the first $5$ terms, keep adding the given common difference to the given first term.
$\bf{\text{Solution Details:}}$
In the given sequence, $a_1=
5
,$ and $d=
-2
.$ Then the second term is
\begin{array}{l}\require{cancel}
a_2=a_1+d
\\\\
a_2=5+(-2)
\\\\
a_2=5-2
\\\\
a_2=3
,\end{array}
the third term is
\begin{array}{l}\require{cancel}
a_3=a_2+d
\\\\
a_3=3+(-2)
\\\\
a_3=3-2
\\\\
a_3=1
,\end{array}
the fourth term is
\begin{array}{l}\require{cancel}
a_4=a_3+d
\\\\
a_4=1+(-2)
\\\\
a_4=1-2
\\\\
a_4=-1
,\end{array}
and the fifth term is
\begin{array}{l}\require{cancel}
a_5=a_4+d
\\\\
a_5=-1+(-2)
\\\\
a_5=-1-2
\\\\
a_5=-3
,\end{array}
Hence, the first $5$ terms are $
5, 3, 1, -1, -3
.$