#### Answer

$8, 14, 20, 26, 32$

#### Work Step by Step

$\bf{\text{Solution Outline:}}$
To find the first $5$ terms, keep adding the given common difference to the given first term.
$\bf{\text{Solution Details:}}$
In the given sequence, $a_1=
8
,$ and $d=
6
.$ Then the second term is
\begin{array}{l}\require{cancel}
a_2=a_1+d
\\\\
a_2=8+6
\\\\
a_2=14
,\end{array}
the third term is
\begin{array}{l}\require{cancel}
a_3=a_2+d
\\\\
a_3=14+6
\\\\
a_3=20
,\end{array}
the fourth term is
\begin{array}{l}\require{cancel}
a_4=a_3+d
\\\\
a_4=20+6
\\\\
a_4=26
,\end{array}
and the fifth term is
\begin{array}{l}\require{cancel}
a_5=a_4+d
\\\\
a_5=26+6
\\\\
a_5=32
,\end{array}
Hence, the first $5$ terms are $
8, 14, 20, 26, 32
.$