Algebra and Trigonometry 10th Edition

Published by Cengage Learning
ISBN 10: 9781337271172
ISBN 13: 978-1-33727-117-2

Chapter 10 - 10.2 - Operations with Matrices - 10.2 Exercises - Page 725: 35

Answer

$AB$ is an $3\times2$ matrix. $AB=\begin{bmatrix} -2 & 51 \\ -8 & 33 \\ 0 & 27 \end{bmatrix}$

Work Step by Step

$A$ is an $3\times2$ matrix and $B$ is an $2\times2$ matrix. The number of columns of $A$ is equal to the number of rows of $B$. So, it is possible to find $AB$, where $AB$ is a $3\times2$ matrix. $\begin{bmatrix} -1 & 6 \\ -4 & 5 \\ 0 & 3 \end{bmatrix}·\begin{bmatrix} 2 & 3 \\ 0 & 9 \end{bmatrix}=\begin{bmatrix} -1(2)+6(0) & -1(3)+6(9) \\ -4(2)+5(0) & -4(3)+5(9) \\ 0(2)+3(0) & 0(3)+3(9) \end{bmatrix}=\begin{bmatrix} -2 & 51 \\ -8 & 33 \\ 0 & 27 \end{bmatrix}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.