#### Answer

$3\log_{5}x-5\log_{5}y=\log_{5}\dfrac{x^{3}}{y^{5}}$

#### Work Step by Step

$3\log_{5}x-5\log_{5}y$
Take the coefficients $3$ and $5$ inside their respective logarithms as exponents:
$3\log_{5}x-5\log_{5}y=\log_{5}x^{3}-\log_{5}y^{5}=...$
Combine $\log_{5}x^{3}-\log_{5}y^{5}$ as the $\log$ of a division:
$...=\log_{5}\dfrac{x^{3}}{y^{5}}$