Algebra 2 Common Core

Published by Prentice Hall
ISBN 10: 0133186024
ISBN 13: 978-0-13318-602-4

Chapter 7 - Exponential and Logarithmic Functions - 7-6 Natural Logarithms - Practice and Problem-Solving Exercises - Page 481: 28

Answer

$t=\pm \sqrt{e^3}+1$

Work Step by Step

Recall: $$\ln{a}=y \longleftrightarrow e^y=a$$ Use the definition above to obtain: \begin{align*} \ln{\left(t-1\right)^2}&=3\\\\ e^3&=(t-1)^2\\\\ \pm\sqrt{e^3}&=\sqrt{(t-1)^2}\\\\ \pm\sqrt{e^3}&=t-1\\\\ \pm\sqrt{e^3}+1&=t\\\\ \end{align*} Check: \begin{align*} \ln{\left(\left(\sqrt{e^3}+1-1\right)^2\right)}&\stackrel{?}=3\\\\ \ln{\left(\left(\sqrt{e^3}\right)^2\right)}&\stackrel{?}=3\\\\ \ln{e^3}&\stackrel{?}=3\\\\ 3&\stackrel{\checkmark}=3\end{align*} \begin{align*} \ln{\left(\left(-\sqrt{e^3}+1-1\right)^2\right)}&\stackrel{?}=3\\\\ \ln{\left(\left(-\sqrt{e^3}\right)^2\right)}&\stackrel{?}=3\\\\ \ln{e^3}&\stackrel{?}=3\\\\ 3&\stackrel{\checkmark}=3\end{align*}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.