Thermodynamics: An Engineering Approach 8th Edition

Published by McGraw-Hill Education
ISBN 10: 0-07339-817-9
ISBN 13: 978-0-07339-817-4

Chapter 3 - Properties of Pure Substances - Problems - Page 157: 3-99

Answer

a) $T_{2}=568.24K$ b) $T_{2}=572.97K$

Work Step by Step

a) Based on the ideal gas equation: $\upsilon_{1}=\frac{RT_{1}}{P_{1}}=\frac{0.1889\frac{kPam^3}{kgK}*(200+273.15)K}{1000kPa}=0.08938\frac{m^3}{kg}$ Knowing that is a polytropic process: $\upsilon_{2}=\upsilon_{1}(\frac{P_{1}}{P_{2}})^{\frac{1}{n}}=0.08938\frac{m^3}{kg}*(\frac{1000kPa}{3000kPa})^{\frac{1}{1.2}}=0.03578\frac{m^3}{kg}$ $T_{2}=\frac{P_{2}\upsilon_{2}}{R}=\frac{3000kPa*0.03578\frac{m^3}{kg}}{0.1889\frac{kPam^3}{kgK}}=568.24K$ b) Using the Van Der Waals equation: $a=\frac{27R^2T_{cr}^2}{64P_{cr}}=\frac{27*(0.1889\frac{kPam^3}{kgK})^2*(304.2K)^2}{64*7390kPa}=0.1885\frac{m^6kPa}{kg^2}$ $b=\frac{RT_{cr}}{8P_{cr}}=\frac{0.1889\frac{kPam^3}{kgK}*304.2K}{8*7390kPa}=0.000972\frac{m^3}{kg}$ $(P_{1}+\frac{a}{\upsilon_{1}^2})(\upsilon_{1}-b)=RT_{1}$ $(1000+\frac{0.1885}{\upsilon_{1}^2})(\upsilon_{1}-0.000972)=0.1889*473.15$ Solving for $\upsilon_{1}$ $\upsilon_{1}=0.08824\frac{m^3}{kg}$ $\upsilon_{2}=\upsilon_{1}(\frac{P_{1}}{P_{2}})^{\frac{1}{n}}=0.08824\frac{m^3}{kg}(\frac{1000}{3000})^{\frac{1}{1.2}}=0.03532\frac{m^3}{kg}$ $T_{2}=\frac{(P_{2}+\frac{a}{\upsilon_{2}^2})(\upsilon_{2}-b)}{R}=\frac{(3000+\frac{0.1885}{0.03532^2})(0.03532-0.000972)}{0.1889}$ $T_{2}=572.97K$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.