Thermodynamics: An Engineering Approach 8th Edition

Published by McGraw-Hill Education
ISBN 10: 0-07339-817-9
ISBN 13: 978-0-07339-817-4

Chapter 3 - Properties of Pure Substances - Problems - Page 157: 3-96E

Answer

a) $T=434.98R$ b) $T=637.46R$ c) $T=659.67R$

Work Step by Step

a) Based on the ideal gas equation: $T=\frac{P\upsilon}{R}=\frac{400psia*0.1144\frac{ft^3}{lbm}}{0.1052\frac{psiaft^3}{lbmR}}=434.98R$ b) Using the Van Der Waals equation: $a=\frac{27R^2T_{cr}^2}{64P_{cr}}=\frac{27*(0.1052\frac{psiaft^3}{lbmR})^2*(673.6R)^2}{64*588.7psia}=3.599\frac{ft^6kPa}{lbm^2}$ $b=\frac{RT_{cr}}{8P_{cr}}=\frac{0.1052\frac{psiaft^3}{lbmR}*673.6R}{8*588.7psia}=0.01505\frac{ft^3}{lbm}$ $T=\frac{1}{R}(P+\frac{a}{\upsilon^2})(\upsilon-b)=\frac{1}{0.1052}(400+\frac{3.599}{0.1144^2})(0.1144-0.01505)=637.46R$ c) From table A-13E $T=200^{\circ}F=659.67R$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.