Thermodynamics: An Engineering Approach 8th Edition

Published by McGraw-Hill Education
ISBN 10: 0-07339-817-9
ISBN 13: 978-0-07339-817-4

Chapter 3 - Properties of Pure Substances - Problems - Page 157: 3-95

Answer

a) $P_{2}=156.41kPa$ b) $P_{2}=156.42kPa$

Work Step by Step

Knowing that: $V_{1}=V_{2}$ $m_{1}=m_{2}$ a) Based on the ideal gas equation: $\frac{P_{1}V_{1}}{RT_{1}}=\frac{P_{2}V_{2}}{RT_{2}}$ Simplifying and substituting: $P_{2}=\frac{P_{1}T_{2}}{T_{1}}=\frac{80kPa*(300+273.15)K}{(20+273.15)K}=156.41kPa$ b) Using the Benedict-Webb-Rubin equation: $v_{1}=v_{2}=\frac{R_{u}T_{1}}{P_{1}}=\frac{8.314\frac{kPam^3}{kmolK}*(20++273.15)K}{80kPa}=30.466\frac{m^3}{kmol}$ $P_{2}=\frac{R_{u}T_{2}}{v_{2}}+(B_{0}R_{u}T_{2}-A{0}-\frac{C_{0}}{T_{2}^2})\frac{1}{v_{2}^2}+\frac{bR_{u}T_{2}-a}{v_{2}^3}+\frac{a\alpha}{v_{2}^6}+\frac{c}{v_{2}^3T_{2}^2}(1+\frac{\gamma}{v_{2}^2})e^{\frac{-\gamma}{v_{2}^2}}$ Substituting all the coefficients for methane of table 3-4: $P_{2}=156.42kPa$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.