Thermodynamics: An Engineering Approach 8th Edition

Published by McGraw-Hill Education
ISBN 10: 0-07339-817-9
ISBN 13: 978-0-07339-817-4

Chapter 3 - Properties of Pure Substances - Problems - Page 157: 3-91

Answer

a) $V_{1}=0.06297\frac{m^3}{s}$ $\rho_{1}=31.76\frac{kg}{m^3}$ $V_{2}=0.05667\frac{m^3}{s}$ b) $V_{1}=0.06164\frac{m^3}{s}$ $\rho_{1}=32.44\frac{kg}{m^3}$ $V_{2}=0.05474\frac{m^3}{s}$ c) $V_{1}$ $(2.16\% error)$ $\rho_{1}$ $(2.10\% error)$ $V_{2}$ $(3.53\% error)$

Work Step by Step

a) Based on the ideal gas equation: $V_{1}=\frac{mRT_{1}}{P_{1}}=\frac{2\frac{kg}{s}*0.1889\frac{kPam^3}{kgK}*500K}{3000kPa}=0.06297\frac{m^3}{s}$ $\rho_{1}=\frac{P_{1}}{RT_{1}}=\frac{3000kPa}{0.1889\frac{kPam^3}{kgK}*500K}=31.76\frac{kg}{m^3}$ $V_{2}=\frac{mRT_{2}}{P_{2}}=\frac{2\frac{kg}{s}*0.1889\frac{kPam^3}{kgK}*450K}{3000kPa}=0.05667\frac{m^3}{s}$ b) Using the generalized compressibility chart: $P_{R,1}=\frac{P_{1}}{P_{cr}}=\frac{3MPa}{7.39MPa}=0.407$ $T_{R,1}=\frac{T_{1}}{T_{cr}}=\frac{500K}{304.2K}=1.64$ $P_{R,2}=0.407$ $T_{R,2}=\frac{T_{2}}{T_{cr}}=\frac{450K}{304.2K}=1.48$ From Fig A-15 $Z_{1}=0.979$ $Z_{2}=0.966$ $V_{1}=\frac{Z_{1}mRT_{1}}{P_{1}}=\frac{0.979*2\frac{kg}{s}*0.1889\frac{kPam^3}{kgK}*500K}{3000kPa}=0.06164\frac{m^3}{s}$ $\rho_{1}=\frac{P_{1}}{Z_{1}RT_{1}}=\frac{3000kPa}{0.979*0.1889\frac{kPam^3}{kgK}*500K}=32.44\frac{kg}{m^3}$ $V_{2}=\frac{Z_{2}mRT_{2}}{P_{2}}=\frac{0.966*2\frac{kg}{s}*0.1889\frac{kPam^3}{kgK}*450K}{3000kPa}=0.05474\frac{m^3}{s}$ c) Errors: $V_{1}$ $(2.16\% error)$ $\rho_{1}$ $(2.10\% error)$ $V_{2}$ $(3.53\% error)$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.