Thermodynamics: An Engineering Approach 8th Edition

Published by McGraw-Hill Education
ISBN 10: 0-07339-817-9
ISBN 13: 978-0-07339-817-4

Chapter 3 - Properties of Pure Substances - Problems - Page 157: 3-100

Answer

a) $T=457.62K$ b) $T=465.87K$ c) $T=473.01K$

Work Step by Step

a) Based on the ideal gas equation: $T=\frac{PV}{mR}=\frac{600kPa*1m^3}{2.841kg*0.4615\frac{kPam^3}{kgK}}=457.62K$ b) Using the Van Der Waals equation: $a=\frac{27R^2T_{cr}^2}{64P_{cr}}=\frac{27*(0.4615\frac{kPam^3}{kgK})^2*(647.1K)^2}{64*22060kPa}=1.705\frac{m^6kPa}{kg^2}$ $b=\frac{RT_{cr}}{8P_{cr}}=\frac{0.4615\frac{kPam^3}{kgK}*647.1K}{8*22060kPa}=0.00169\frac{m^3}{kg}$ $T=\frac{1}{R}(P+\frac{a}{\upsilon^2})(\upsilon-b)=\frac{1}{0.4615}(600+\frac{1.705}{(\frac{1}{2.841})^2})(\frac{1}{2.841}-0.00169)=465.87K$ c) Interpolating from table A-6 $T=199.86^{\circ}C=473.01K$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.