Answer
a) $T=457.62K$
b) $T=465.87K$
c) $T=473.01K$
Work Step by Step
a) Based on the ideal gas equation:
$T=\frac{PV}{mR}=\frac{600kPa*1m^3}{2.841kg*0.4615\frac{kPam^3}{kgK}}=457.62K$
b) Using the Van Der Waals equation:
$a=\frac{27R^2T_{cr}^2}{64P_{cr}}=\frac{27*(0.4615\frac{kPam^3}{kgK})^2*(647.1K)^2}{64*22060kPa}=1.705\frac{m^6kPa}{kg^2}$
$b=\frac{RT_{cr}}{8P_{cr}}=\frac{0.4615\frac{kPam^3}{kgK}*647.1K}{8*22060kPa}=0.00169\frac{m^3}{kg}$
$T=\frac{1}{R}(P+\frac{a}{\upsilon^2})(\upsilon-b)=\frac{1}{0.4615}(600+\frac{1.705}{(\frac{1}{2.841})^2})(\frac{1}{2.841}-0.00169)=465.87K$
c) Interpolating from table A-6
$T=199.86^{\circ}C=473.01K$