Physics: Principles with Applications (7th Edition)

Published by Pearson
ISBN 10: 0-32162-592-7
ISBN 13: 978-0-32162-592-2

Chapter 30 - Nuclear Physics and Radioactivity - Problems - Page 882: 56

Answer

$8.6\times10^{-7}$.

Work Step by Step

Find the ratio of the decay rates. $$\frac{\left(\frac{\Delta N}{\Delta t}\right)_{218}}{\left(\frac{\Delta N}{\Delta t}\right)_{214}}$$ Use equation 30–3b for the decay rate, $\frac{\Delta N}{\Delta t}=-\lambda N$. $$\frac{\left(\frac{\Delta N}{\Delta t}\right)_{218}}{\left(\frac{\Delta N}{\Delta t}\right)_{214}}=\frac{-\lambda_{218}N_{218}}{-\lambda_{214}N_{214}}$$ Assume there are equal numbers of each isotope. $$\frac{\left(\frac{\Delta N}{\Delta t}\right)_{218}}{\left(\frac{\Delta N}{\Delta t}\right)_{214}}=\frac{\lambda_{218} }{\lambda_{214} }$$ Use equation 30-6 to bring in the half-lives. $$\frac{\left(\frac{\Delta N}{\Delta t}\right)_{218}}{\left(\frac{\Delta N}{\Delta t}\right)_{214}}=\frac{T_{1/2,\;214} }{ T_{1/2,\;218 }}$$ $$\frac{\left(\frac{\Delta N}{\Delta t}\right)_{218}}{\left(\frac{\Delta N}{\Delta t}\right)_{214}}=\frac{1.6\times10^{-4}s }{(3.1m)(60s/m)}= 8.6\times10^{-7}$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.