Physics: Principles with Applications (7th Edition)

Published by Pearson
ISBN 10: 0-32162-592-7
ISBN 13: 978-0-32162-592-2

Chapter 30 - Nuclear Physics and Radioactivity - Problems - Page 882: 43

Answer

a) $3.60\times10^{12}Bq$ b) $3.58\times10^{12}Bq$ c) $1.33\times10^{9}Bq$

Work Step by Step

$\lambda=\frac{\ln(2)}{T_{0.5}}$. The half life of $^{131}_{53}I$ is 8.0252 days, so the decay constant is: $\lambda=9.997\times10^{-7}s^{-1}$ The number of nuclei is: $N_0=782\times10^{-6}g\times\frac{1 mol}{130.906g}\times6.02\times10^{23}\frac{atoms}{mol}$ $=3.5962\times10^{18}$ nuclei a) $\frac{\Delta N}{\Delta t}=\lambda N_0l^{-\lambda t}=(9.997\times10^{-7}s^{-1})(3.5962\times10^{18} nuclei)e^{0}=3.60\times10^{12}Bq$ b) $\frac{\Delta N}{\Delta t}=\lambda N_0l^{-\lambda t}=(9.997\times10^{-7}s^{-1})(3.5962\times10^{18} nuclei)e^{1.50h\times\frac{3600s}{1h}}=3.58\times10^{12}Bq$ c) $\frac{\Delta N}{\Delta t}=\lambda N_0l^{-\lambda t}=(9.997\times10^{-7}s^{-1})(3.5962\times10^{18} nuclei)e^{3.0m\times30\frac{d}{m}\frac{24h}{d}\frac{3600s}{h}}=1.33\times10^{9}Bq$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.