Physics: Principles with Applications (7th Edition)

Published by Pearson
ISBN 10: 0-32162-592-7
ISBN 13: 978-0-32162-592-2

Chapter 17 - Electric Potential - Problems - Page 497: 31

Answer

a) $V=27.14V$ b) $E_K=2.17\times10^{-18}J=13.6eV$ c) $\sum E=-13.5eV=-2.16\times10^{-18}J$ d) $E_i=13.5eV=2.16\times10^{-18}J$

Work Step by Step

a) $V=\frac{kQ}{r}=\frac{(8.99\times10^9\frac{N\cdot m^2}{C^2})(1.60\times10^{-19}C)}{0.53\times10^{-10}m}=27.14V$ b) To find velocity, we can use the fact that the electron's orbit is circular. $\frac{mv^2}{r}=\frac{ke^2}{r^2}$ $v=\sqrt{\frac{ke^2}{rm}}=\sqrt{\frac{(8.99\times10^9\frac{N\cdot m^2}{C^2})(1.60\times10^{-19}C)^2}{(0.53\times10^{-10}m)(9.11\times10^{-31}kg)}}$ $=2.18\times10^6\frac{m}{s}$ $E_K=\frac{mv^2}{2}=\frac{(9.11\times10^{-31}kg)(2.18\times10^6\frac{m}{s})^2}{2}=2.17\times10^{-18}J$ $2.17\times10^{-18}J\times\frac{1eV}{1.60\times10^{-19}J}=13.6eV$ c) $E_P=k\frac{Q_1Q_2}{r}=(8.99\times10^9\frac{N\cdot m^2}{C^2})\frac{(1.60\times10^{-19}C)(-1.60\times10^{-19}C)}{0.53\times10^{-10}m}$ $=-4.34\times10^{-18}J=-27.1eV$ $\sum E=E_K+E_P=13.6eV-27.1eV=-13.5eV=-2.16\times10^{-18}J$ d) At a distance of infinity, the electron will have no potential energy and it will have no kinetic energy. This means the energy required is equal in magnitude to the total energy of the electron but negative because we re removing the energy. $E_i=13.5eV=2.16\times10^{-18}J$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.