Fundamentals of Physics Extended (10th Edition)

Published by Wiley
ISBN 10: 1-11823-072-8
ISBN 13: 978-1-11823-072-5

Chapter 5 - Force and Motion-I - Problems - Page 121: 65b

Answer

At $t=3.00 \mathrm{s},$ $$m_{1}=m_{10}+\left(d m_{1} / d t\right) t$$$$=1.30 \mathrm{kg}+(-0.200 \mathrm{kg} / \mathrm{s})(3.00 \mathrm{s})=0.700 \mathrm{kg},$$ and the rate of change of acceleration is $$\frac{d a}{d t}=\frac{d a}{d m_{1}} \frac{d m_{1}}{d t}=-\frac{2 m_{2} g}{\left(m_{2}+m_{1}\right)^{2}} \frac{d m_{1}}{d t}$$$$=-\frac{2(2.80 \mathrm{kg})\left(9.80 \mathrm{m} / \mathrm{s}^{2}\right)}{(2.80 \mathrm{kg}+0.700 \mathrm{kg})^{2}}(-0.200 \mathrm{kg} / \mathrm{s})$$ $$=0.896 \mathrm{m} / \mathrm{s}^{3}$$

Work Step by Step

At $t=3.00 \mathrm{s},$ $$m_{1}=m_{10}+\left(d m_{1} / d t\right) t$$$$=1.30 \mathrm{kg}+(-0.200 \mathrm{kg} / \mathrm{s})(3.00 \mathrm{s})=0.700 \mathrm{kg},$$ and the rate of change of acceleration is $$\frac{d a}{d t}=\frac{d a}{d m_{1}} \frac{d m_{1}}{d t}=-\frac{2 m_{2} g}{\left(m_{2}+m_{1}\right)^{2}} \frac{d m_{1}}{d t}$$$$=-\frac{2(2.80 \mathrm{kg})\left(9.80 \mathrm{m} / \mathrm{s}^{2}\right)}{(2.80 \mathrm{kg}+0.700 \mathrm{kg})^{2}}(-0.200 \mathrm{kg} / \mathrm{s})$$ $$=0.896 \mathrm{m} / \mathrm{s}^{3}$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.