Fundamentals of Physics Extended (10th Edition)

Published by Wiley
ISBN 10: 1-11823-072-8
ISBN 13: 978-1-11823-072-5

Chapter 30 - Induction and Inductance - Problems - Page 901: 80

Answer

$t = 1.0~ns$

Work Step by Step

Note that the final value of the current is $\frac{\mathscr{E}}{R}$ We can find $t$: $i = \frac{\mathscr{E}}{R}~(1-e^{-tR/L})$ $\frac{i~R}{\mathscr{E}} =(1-e^{-tR/L})$ $e^{-tR/L} = 1-\frac{i~R}{\mathscr{E}}$ $e^{tR/L} = \frac{1}{1-\frac{i~R}{\mathscr{E}}}$ $\frac{tR}{L} = ln(\frac{1}{1-\frac{i~R}{\mathscr{E}}})$ $t = \frac{L}{R}~{ln(\frac{1}{1-\frac{i~R}{\mathscr{E}}})}$ $t = \frac{8.0\times 10^{-6}~H}{4000~\Omega}~{ln[\frac{1}{1-\frac{(2.0\times 10^{-3}~A)~(4000~\Omega)}{20~V}}}]$ $t = \frac{8.0\times 10^{-6}~H}{4000~\Omega}~{ln(\frac{1}{1-0.4}})$ $t = 1.0~ns$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.