Answer
$R=96.4cm$
Work Step by Step
The radius can be determined from the formula:
$R=\frac{mv}{qB}$.....................................eq(1)
We also know that
$K.E=\frac{1}{2}mv^2$
which can be re-arranged as
$v=\sqrt{\frac{2K.E}{m}}$
Now, we substitute the values into this formula to find $v$:
$v=\sqrt{\frac{2(100\times 1.6\times 10^{-19})}{9.109\times 10^{-31}}}=5.9271\times 10^6\frac{m}{s}$
We then plug in the known values in eq(1) to obtain $R$:
$R=\frac{(9.109\times 10^{-31})(5.9271\times 10^6)}{(1.6\times 10^{-19})(35\times10^{-6})}$
$R=0.964m$
or $R=96.4cm$