Fundamentals of Physics Extended (10th Edition)

Published by Wiley
ISBN 10: 1-11823-072-8
ISBN 13: 978-1-11823-072-5

Chapter 28 - Magnetic Fields - Problems - Page 829: 5

Answer

$B_x=-2.0T$

Work Step by Step

We know that $F=q(v\times B)$ We plug in the known values to obtain: $(6.4\times10^{-19})k^{\wedge}=(-1.6\times10^{-19})(2i^{\wedge}+4j^{\wedge})\times(B_xi^{\wedge}+3B_xj^{\wedge})$ We know that $i^{\wedge}\times i^{\wedge}=j^{\wedge}\times j^{\wedge}=k^{\wedge}\times k^{\wedge}=0$ and $i^{\wedge}\times j^{\wedge}=K^{\wedge}$, $j^{\wedge}\times i^{\wedge}=-K^{\wedge}$ Therefore, $(6.4\times10^{-19})k^{\wedge}=(-1.6\times10^{-19})(6B_xk^{\wedge}+4B_x(-k^{\wedge}))$ $(6.4\times10^{-19})k^{\wedge}=(-1.6\times10^{-19})(2B_xk^{\wedge})$ $(6.4\times10^{-19})=(-1.6\times10^{-19})(2B_x)$ $B_x=-2.0T$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.