Answer
$F=(6.2\times 10^{-14}N)k^{\wedge}$
Work Step by Step
We know that,
$F=qv\times B$
We plug in the known values of $q,v,B$ in this formula to obtain:
$F=-1.6\times10^{-19}(2\times 10^6i^{\wedge}+3\times10^6j^{\wedge})(0.030i^{\wedge}-0.15j^{\wedge})$
We know that $i^{\wedge}\times i^{\wedge}=j^{\wedge}\times j^{\wedge}=0$ and $i^{\wedge}\times j^{\wedge}=k^{\wedge}$ and $j^{\wedge}\times i^{\wedge}=-k^{\wedge}$.
Therefore,
$F=-1.6\times10^{-19}[2\times10^6(-0.15)k^{\wedge}+3\times10^6(0.030)(-k^{\wedge})]$
$F=(6.2\times 10^{-14}N)k^{\wedge}$