Fundamentals of Physics Extended (10th Edition)

Published by Wiley
ISBN 10: 1-11823-072-8
ISBN 13: 978-1-11823-072-5

Chapter 28 - Magnetic Fields - Problems - Page 829: 11

Answer

The strength of the electric field is $~~6.8\times 10^5~N/C$

Work Step by Step

To find the ion's speed, we can consider the kinetic energy after accelerating through the potential difference: $K = q~V_1$ $\frac{1}{2}mv^2 = q~V_1$ $v^2 = \frac{2~q~V_1}{m}$ $v = \sqrt{\frac{2~q~V_1}{m}}$ $v = \sqrt{\frac{(2)(1.6\times 10^{-19})(10,000~V)}{9.99\times 10^{-27}~kg}}$ $v = 5.66\times 10^5~m/s$ The force on the ions due to the electric field must be equal in magnitude to the force on the ions due to the magnetic field. We can find the magnitude of the electric field: $qE = qvB$ $E = v~B$ $E = (5.66\times 10^5~m/s)(1.2~T)$ $E = 6.8\times 10^5~N/C$ The strength of the electric field is $~~6.8\times 10^5~N/C$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.