Fundamentals of Physics Extended (10th Edition)

Published by Wiley
ISBN 10: 1-11823-072-8
ISBN 13: 978-1-11823-072-5

Chapter 15 - Oscillations - Problems - Page 437: 22

Answer

$d$ = 4 m

Work Step by Step

Using the period equation of SHM we get the mass 2 by $$m_{2}=\dfrac{k T^{2}}{4 \pi^{2}}= \dfrac{(1208.5) (0.14)^{2}}{4 \pi^{2}}= 0.6 \mathrm{kg}$$ From the conservation law we get the final velocity of mass 1 by \begin{gather*} m_{1}\left(v_{1 i}-v_{1 f}\right)=m_{2}\left(v_{1 i}+v_{1 f}\right)\\ \left|v_{1 f}\right|=\left|\frac{m_{1}-m_{2}}{m_{1}+m_{2}}\right| v_{1 i}\\ \left|v_{1 f}\right|=\left|\frac{0.2 \mathrm{kg}-0.6 \mathrm{kg}}{0.2 \mathrm{kg}+0.6 \mathrm{kg}}\right|(8 \mathrm{m} / \mathrm{s})\\ \left|v_{1 f}\right| = 4 \,\text{m/s} \end{gather*} Hence, we use this value of the speed as its the initial speed of the projectile $v_o = v_1f$ to get the distance $d$ $$d=v_o t= v_{o} \sqrt{\frac{2 h}{g}}=(4 \mathrm{m} / \mathrm{s}) \sqrt{\frac{2(4.9 \mathrm{m})}{9.8 \mathrm{m} / \mathrm{s}^{2}}}=4 \mathrm{~m}$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.