Fundamentals of Physics Extended (10th Edition)

Published by Wiley
ISBN 10: 1-11823-072-8
ISBN 13: 978-1-11823-072-5

Chapter 10 - Rotation - Problems - Page 288: 17f

Answer

The graph is shown below:

Work Step by Step

İf the angular acceleration is constant then the angle time function can be expressed as: $\theta \left( t\right) =\theta _{0}+w_{0}t+\dfrac {\alpha t^{2}}{2} .............(1)$ Using equation (1), we get: $\dfrac {\alpha t^{2}}{2}+w_{0}t+\left( \theta _{0}-\theta \left( t\right) \right) =0\left( 2\right) $ If we solve equation (2), we get $t_{1,2}=\dfrac {-w\pm \sqrt {\left( w^{2}-4\times \dfrac {a}{2}\times \left( \theta _{0}-\theta \left( t\right) \right) \right) }}{a}..........\left( 3\right) $ So the graph will be a parabola. Lets mark two $t$ values for $\theta (t) =0$. Given the numbers $w_{0}=4.7\dfrac {rad}{s};\alpha =-0.25\dfrac {rad}{s^{2}}; \theta_{0}=0$ Using (3), we get $t_{1,2}=\dfrac {-w_{0}\pm \sqrt {\left( w^{2}_{0}-4\times \dfrac {a}{2}\times \left( \theta _{0}-\theta \left( t\right) \right) \right) }}{a}=\dfrac {-4.7\pm \sqrt {\left( 4.7^{2}-4\times \left( \dfrac {-0.25}{2}\right) x\left( 0-0\right) \right) }}{-0.25}\approx 0s, 37.65s $ Now lets find the maximum value of $\theta$ using (3). Since the inside square root cant be negative and minimum can be zero, we get: $w^{2}_{0}-4\times \dfrac {\alpha }{2}\left( \theta _{0}-\theta \right) \geq 0\Rightarrow \dfrac {\omega ^{2}_{0}}{2\alpha }\geq \theta _{0}-\theta \Rightarrow \theta \leq \theta _{0}-\dfrac {\omega ^{2}_{0}}{2\alpha }\Rightarrow \theta \leq 0-\dfrac {4.7^{2}}{2\times -\left( 0.25\right) }=44.18rad\Rightarrow \theta _{\max }=44.18rad$ İf we look at $α$, we see it is negative so the parabola will be concave up.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.